UNIVERSITY OF KONSTANZ Department of Physics Thiago Lucena, Dr. Andrey Moskalenko

http://tinyurl.com/qo2019

Quantum Optics Winter semester 2018/2019 - Exercise sheet 9 Distributed: 07.01.2019, Discussion: 14.01.2019

## Problem 1: Characterization of non-classical states of light.

Show that the radiation field state which is a linear superposition of the vacuum state and a single photon state,

$$|\psi\rangle = a_0|0\rangle + a_1|1\rangle,$$

with  $a_0, a_1 \in \mathbb{C}$ , is a non-classical state.

## Problem 2: Second-order correlation function and density matrix.

Consider the state described by the density operator  $\hat{\rho} = N \hat{a}^{\dagger m} e^{-\kappa \hat{a}^{\dagger} \hat{a}} \hat{a}^{m}$ , where N is a normalization constant.

a) Show that it goes over to a Fock state in the limit  $\kappa \to \infty$  and to a thermal state in the limit  $\kappa \to 0$ . HINT: check the matrix elements  $\rho_{mn}$  for the respective states. For the thermal state limit, consider also  $n \gg 1$ .

b) Find  $g^{(2)}$  for this state and show that the photon statistics is sub-Poissonian if  $\bar{n} < \sqrt{m/(m+1)}$ , where  $\bar{n} = [\exp(\kappa) - 1]^{-1}$ .

## Problem 3: Spatial properties of $g^{(2)}$ .

Consider a field with a single photon in each of the two modes k, k' with the same frequency  $(k = k'), |1_k 1_{k'}\rangle = \hat{a}_k^{\dagger} \hat{a}_{k'}^{\dagger} |0\rangle$ . Show that the (unnormalized) second order correlation function for this field is

$$G^{(2)}(\mathbf{r}, \mathbf{r}'; \tau = 0) = 2\mathcal{E}_{\mathbf{k}}^{4}[1 + \cos((\mathbf{k} - \mathbf{k}') \cdot (\mathbf{r} - \mathbf{r}'))].$$

## Problem 4: Second-order correlation function and non-classicality.

For the squeezed coherent state  $\hat{D}(\alpha)\hat{S}(\xi)|0\rangle = |\alpha,\xi\rangle$ , show that  $g^{(2)}(\tau)$  is given by

$$g^{(2)}(\tau) = 1 + \frac{|\alpha|^2 [\cosh(2|\xi|) - \sinh(2|\xi|) \cos(2\theta - \phi) - 1] + \sinh^2(|\xi|) \cosh(2|\xi|)}{(|\alpha|^2 + \sinh^2(|\xi|))^2},$$

where  $\alpha = |\alpha|e^{i\theta}$  and  $\xi = e^{i\phi}|\xi|$ .

b) Show which conditions  $|\alpha|$  should fulfill (for fixed values of  $|\xi|$ ,  $\theta$  and  $\phi$ ) for this state to have sub-Poissonian statistics. How does the phase  $\Omega = 2\theta - \phi$  influence  $g^{(2)}(\tau)$ ?

c) Estimate the minimum value of  $g^{(2)}(\tau)$  in the space of possible values of  $|\xi|$ ,  $|\alpha|$  and  $\Omega$ .

